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AN EXTREMELY MILD AND GENERAL METHOD FOR THE STEREOCONTROLLED
CONSTRUCTION OF 1,2-CIS-GLYCOSIDIC LINKAGES VI/A S-GLYCOPYRANOSYL
PHOSPHORODIAMIDIMIDOTHIOATES
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Summary: A highly stereocontrolled construction of 1,2-cis-glycosidic linkages under
extremely mild reaction conditions has been developed by using S-glycopyranosyl
N.,N,N'N"-tetramethyl-N"-phenylphosphorodiamidimidothioates with a non-participating
0-2-benzyl group as glycosyl donors in the presence of 2,6-lutidinium p-toluenesulfonate
and tetrabutylammonium iodide.

The growing significance of glycosides and oligosaccharides as constituents of biologically important
compounds such as saponins, cardenolides, antibiotics, glycolipids, and glycoproteins has sparked
considerable interest in expeditious methods for the stereocontrolled construction of the glycosidic linkages.
Despite the recent advances!:2 in this field, however, there still exists a continuing demand for appreciable
developments in terms of mildness, efficacy, generality, and stereocontrol.

Considering that the leaving group of glycosyl donors is one of the most fundamental parameters
responsible for the selectivity and yield of glycosidation reactions, our efforts centered on the development of
new glycosyl donors. We were intrigued by the feasibility of using the phosphorus-containing leaving
groups,3 on the prospect that a number of variations of substituents on the phosphorus atom could make
"tailor-made glycosyl donors" readily available. We recently developed efficient methods for the
stereocontrolled construction of 1,2-trans-glycosidic linkages by the device of shelf-stable glycosy!l donors
incorporating diphenyl phosphate# or P,P-diphenyl-N-(p-toluenesulfonyl)phosphinimidate’ as leaving
groups. Herein, we wish to report on an extremely mild and general procedure for the stereocontrolled
construction of 1,2-cis-glycosidic linkages exploiting S-glycopyranosyl N,N,N',N’-tetramethyl-N"-
phenylphosphorodiamidimidothioates with a non-participating O-2-benzyl group as glycosyl donors.

Construction of 1,2-cis-glycosidic linkages in a stereocontrolled manner has been the focus of much
recent attention.6 We envisaged that this challenging problem could be solved by judicious choice of
substituents on the phosphorus atom in the leaving groups and promoters in favor of SN2-like mechanism,
thus focusing on the readily available 1,2-trans-related 1-thio-glycopyranose bearing a non-participating
benzyl group on O-2 as the source of the glycosyl donors. After considerable experimentation, it was found
that coupling of $-(2,3,4,6-tetra-O-benzyl-B-D-glucopyranosyl)-N,N,N',N -tetramethyl-N"-phenylphos-
phorodiamidimidothioate 17 (1.1 equiv.) with suitably protected glycosides 6,7,9, and10 (1.0 equiv.) in
toluene in the presence of 2,6-lutidinium p-toluenesulfonate (LPTS)? (1.15 equiv.) and pulverized molecular
sieves 4A at 23 °C proceeded under kinetic control to lead to the preponderant formation of 1,2-cis-linked
disaccharides (entries 1, 4, 7, 9, and 11 in Table 1). The combination of LPTS as a promoter10 and toluene

4769



4770

N NPh on
Bno: SP(NMey), SP(NMey), MW&P‘"M
Bn BnO Bn 5

1 R=Bn
2 R=Tr
3 R=SIMe;Bu’
H OBn
o — %3%/ 'W&/ s%znm,
OMe X
7 X=OMe, Y=H
8 X=H, Y=0Bn

o OH Bu!

w %J@ X° l&% /'\'Q;g :::‘ H,oélpnz

MeO O OH on
14 15

as a solvent proved to be the superior choice for allowing considerable levels of 1,2-cis-selectivity as well as
extremely mild reaction conditions, with which the acid-labile groups such as epoxy, acetal, or O-tert-
butyldimethylsilyl groups are completely comparable.

Although the 1,2-cis-glycosidation reactions developed here involved several features,!! the
stereoselectivity was not necessarily satisfactory in view of the requisite levels for current synthetic
carbohydrate chemistry. In an effort to enhance the degrees of the stereoselectivity, we reasoned that if this
method could be coupled with Lemieux's glycosidation method6® via halide ion catalyzed process, the new
version would constitute an extremely mild procedure for the highly stereocontrolled construction of 1,2-cis-
glycosidic linkages. However, the glycosidation of 1 with 6 or 7 in the presence of tetrabutylammonium
bromide, the most widely used additive,6¢4% took much longer reaction times than the original method,
though 1,2-cis-selectivity of up to 96% was attained (entries 2 and 5). In stark contrast, we were pleased to
find that this goal could be readily achieved by the use of tetrabutylammonium iodide as an additive. As
seen from Table 1, the new version required almost the same reaction times as the original procedure, but
afforded even higher levels of 1,2-cis-selectivity (entries 3, 6, 8, 10, and 12).14 It should be noted that this
is the first successful use of tetrabutylammonium iodide as an additive. Apart from o-D-glucosylation, the
method was advantageously extended to a-D-galactosylation and o-L-fucosylation (entries 18-22), in which
toluene-CH,Cl, (1:1) proved to be the solvent of choice. Furthermore, the mildness and generality of this
method was demonstrated by a range of variations possible in glycosyl donors and acceptors.

In conclusion, the present method based on S-glycopyranosyl phosphorodiamidimidothioates
constitutes an exceptionally mild procedure for the highly stereocontrolled construction of 1,2-cis-glycosidic
linkages, and thus represent a promising addition to the existing methods. Further extension of this method
to the construction of carbohydrate-containing natural products and analogues of medicinal importance are
currently in progress in these laboratories.
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entry donor acceptor additive time,h yield2% a:BP 513c &d [a]p?3/°(c, CHCL)C ref.
1 1 6 — 16 8 8020 973 +58.2 (1.12) 6b
2 1 6 BwyNBr 48 82 946
3 1 6 BuNI 16 83 919
4 1 7 — 55 n 86:14  96.6 +46.2 (1.20) 6b
5 1 7 BuNBr 96 72 964
6 1 7 BuNI 55 72 937
7 1 9 —_ 55 72 87:13 955 +50.0 (0.97)
8 1 9 BuyNI 55 76 919
9 1 10 — 55 75 86:14  96.3 +24.7 (0.83)
10 1 10 BusNI 55 77 937
11 1 11 —_ 55 72 8T:13 969 +29.9 (1.31) 6e
12 1 11 BuyNI 55 73 9238
13 1 12 BugNI 55 73 946 98.0 +44.9 (1.15) 6b
14 1 14 BuNI 55 80 937 98.0 +32.9 (1.12) 6i
15 1 15¢ BugNI 55 79 >99:1 94.8 +284.7 (0.55)
16 2 11 BugNI 55 74 >99:1 96.3 +18.4 (1.12)
17 3 11 BuyNI 55 72 946 96.3 +28.0 (1.02)
18f 4 8 BugNI 55 70 93:7 97.5 +18.2 (1.50) 6k
19of 4 11 BuyNI 55 7 92:8 98.3 +15.3 (0.38)
20f 4 13 BuyNI 10 73 91:9 97.6 +3.2 (1.32) 6g
2af s 8 BuyNI 55 72 937 97.7 -38.1 (1.12) 6k
2f 5 12 BuyNI 55 70 946 96.8 -95.3 (0.73) 6a

2 Isolated total yield, P Determined by HPLC and 13C NMR(100 MHz, CDCl3) analysis. € Values for the 1,2-cis-linked
glycosides or disaccharides purified by flash chromatography on silica gel.
formed. © C-7 hydroxy group was glucosylated, f Performed in toluene-CH,Cl, (1:1).

d Chemical shifts for the anomeric centers newly
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